

Toward a Uniform Moraic Quantity (UMQ) Principle

Jonathan Charles Paramore | Department of Linguistics | jcparamo@ucsc.edu

Main Claim

Evidence from a wide range of weight-sensitive phenomena suggests that codas are universally moraic.

1. Background

The standard "variable weight" approach to moraic structure contends that the moraicity of codas is variable and language-specific [1], [2], [3].

Examples

- (2) Yana_{[4], [5]} requires codas to contribute a mora to the syllable, as in (1a).
 - Primary stress criterion: {CV:, CVC} > CV
 - Rule: Stress initial syllable or leftmost heavy if present.
 - (a) 'me.c'i 'coyote' (b) ha. 'laa.la.?i 'barberry' '1.ri.k'i 'ear ornaments' ni. 'gid.sa.sin.ʒa 'l go to another house'
 - (c) ni. 'saa.tin.ʒa 'it is said I went away' ha.c'a. 'ʒid.p'aa 'Angelica Tomentosa'
- (3) Murik_{[6], [7]} bans codas from contributing a mora to the syllable, as in (1b).
 - Primary stress criterion: CV: > {CVC, CV}
 - Rule: Stress initial syllable or leftmost heavy if present.
 - (a) 'da.mag
 'ba.bεth
 'da.kha.nɨmp
 'garden'
 (b) a.nən.pha.ˈrεːth 'lightning'
 nu.ma.ˈřoː.go 'woman'
 num.ˈboːn 'hot water sago'

2. Issues with the "Variable Weight" Analysis

Languages that treat CVC as light for primary stress often treat CVC as heavy for other weight-sensitive phenomena:

Word Minimality: e.g., Murik minimal words: CVI, CVC, but *CV

(4) 'şaq 'clay' q'e: 'sun' *CV mem 'deaf person' k'o: 'mask' č'ok 'blackbird' ku: 'yes'

<u>Tone</u>: Kunama tonal weight criterion: {CV:, CVR} > {CVO, CV}_{[8], [9]}

(5) $ba:^{23}.re^1$ 'two' $\lambda a^1 \lambda a^2$ 'aardvaark' * $\lambda a^{12} \lambda a^2$ hoi²³.ka:³¹.da¹ 'to peel' fit¹.ti¹.da² 'to fly' *fit¹².ti¹.da² a².saŋ³².ga² 'head'

Syllable Template Restrictions: Kunama: CV, CVC, CVI, but *CVIC

(6) baː.re 'two' a.saŋ.ga 'head' *CV:C hai.ma 'gazelle' baʃ.kul.la 'army'

Compensatory Lengthening: Quechua Huallaga: $CV_{\mu}C_{\mu} \rightarrow CV_{\mu\mu}[10]$

(7) /ima-paq-taq/ [imapaːta] 'what for' /hunaq-qa/ [hunaːɣa] 'day-top'

Secondary Stress: Chickasaw CV: > {CVC, CV} Primary vs. {CV:, CVC} > CV Secondary_{[11], [12]}

(8) noˌtakˈfa 'jaw' taˈlaːˌnomˌpaʔ 'telephone' ˌhattaˈkat 'man' _okˌfokˈkol 'type of snail' _ʃimmaˈnoːˌliʔ 'Seminole' _inˌtikˈbaːt 'sibling'

Conclusion: If codas are nonmoraic in languages in which CVC is light for primary stress, we cannot account for the weight of codas in other weight-sensitive phenomena in these same languages.

3. Solution – The UMQ Principle

(9) Uniform Moraic Quantity Principle

Syllable types are universally invariant in their moraicity

- a. Monomoraic syllables: CVb. Bimoraic syllables: CV:, CVC
- c. Trimoraic syllables: CV:C, CVCC

4. Accounting for CVC's Variability

Two weight metrics:

- 1. Moraic quantity metric: $\mu\mu\mu > \mu\mu > \mu$ ({CV:C, CVCC} > {CV:, CVC} > CV)
- 2. Moraic sonority metric:

- Some languages utilize the moraic quantity metric to form their stress criteria.
 - O Yana {CV:, CVC} > CV
 - μμ > μ
- Some languages utilize the moraic sonority metric to form their stress criteria.
- Murik CV: > {CVC, CV}
- $\mu_V > \mu_R$, μ_O
- Kwakw'ala [13], [14] {CV:, CVR} > {CVO, CV}
- μ_V , $\mu_R > \mu_O$
- Languages with complex stress criteria often utilize both weight metrics.
- Mankiyali_[15] CV: > CVC > CV
- μμ > μ
- $\mu_V > \mu_R$, μ_O

5. Formalization – Nonfinality Framework

- Non-fin (GCat, Cat, PCat)
- Entries on a specified level of the grid (GCat)
- Must avoid the final instance of a particular element (Cat)
- Within a given domain (PCat)
- Constraints on moraic sonority
 - O NON-FIN $(x_{\omega}, \mu_{V}, \sigma)$ Assign a violation for every word-level gridmark that occurs over the final vocalic mora of a syllable.

O NON-FIN $(x_{\omega}, \mu_R, \sigma)$ Assign a violation for every word-level gridmark that occurs over the final sonorant mora of a syllable.

6. OT Analysis

Primary stress in Murik CV: > {CVC, CV}

(11)	/anənpʰarɛːtʰ/	Non-fin $(x_{\omega}, \mu_{\vee}, \sigma)$	x _ω -L	Non-fin $(x_{\omega}, \mu, \sigma)$
	→ (w) a. nən.pʰa.ˈrɛːtʰ	0	3	0
	(a) a.ˈnən.pʰa.rɛːtʰ	1 W	₁ L	0
	(b) 'a.nən.pha.reːth	1 W	_o L	1 W

Primary stress in Mankiyali CV: > CVC > CV

(12)	/mač ^h ɪr/	NF(x _ω , μ, σ)	NF($x_ω$, $μ_ν$, σ)	NF(x _ω , σ, ω)	x _ω -R
	→ (w) ma.ˈčʰɪr	0	1	1	0
	(a) ˈma.čʰɪr	1 W	1	o L	₁ W
		II.	ı		
(13)	/kamzorii/	NF($x_ω$, $μ$, $σ$)	NF($x_ω$, $μ_ν$, $σ$)	NF(x _ω , σ, ω)	x _ω -R
(13)	/kamzorii/ → (w) kam.zo.ˈrii		NF(x _ω , μ _ν , σ)	NF(x _ω , σ, ω)	x _ω - R
(13)		0	 - -	NF(x _ω , σ, ω) 1 0	x _ω -R 0 1 W

7. Discussion & Future Research

<u>Discussion</u>

- Nuclei and codas are universally moraic
- Advantages of the UMQ
- Simplifies our theory of moraic structure
- Obviates the need for Coercion
- More accurately predicts CVC's moraic status in "CVC light-for-stress" languages.

Future Research

- What is the factorial typology of the proposed Nonfinality constraints?
- How can languages that use vowel quality to make syllable weight distinctions be incorporated into the moraic sonority metric?
- Impact of the UMQ Principle on foot structure
- Formalization of how other weight-sensitive phenomena utilize the two syllable weight metrics proposed here
- Can these moraic sonority constraints be phonetically or cognitively grounded?

Acknowledgements & References

Acknowledgements

I am thankful to Rachel Walker, Ryan Bennett, Brett Hyde, and the entire Linguistics Community at UC, Santa Cruz for their many comments and suggestions on this project.

Reference

 $\mathbf{X} \quad \mathbf{X}$

 $\mu_{\rm V} \, \mu_{\rm V}$

CV:

 $\mathbf{X} \quad \mathbf{X}$

C V m

Figure 2: Metrical Grid Formulations for each syllable type

 $\mu_{\rm V} \, \mu_{\rm R}$

[1] Hyman, Larry M. (1985). A Theory of Phonological Weight. Foris Publications. [2] Hayes, Bruce. (1989). Compensatory lengthening in moraic phonology. Linguistic Inquiry 20, 253-306. [3] Zec, Draga. (2007). The syllable. In Paul de Lacy (ed.), The Cambridge handbook of phonology, 173-206. [4] Sapir, Edward, & Morris Swadesh. (1960). Yana dictionary [University of California Publications in Linguistics 22]. Berkeley: University of California Press. [5] Hyde, Brett. (2006). Towards a uniform account of prominence-sensitive stress. Wondering at the natural fecundity of things: Essays in honor of Alan Prince, ed. by Eric Baković, John J. McCarthy, and Junko Itô, 139-183. Santa Cruz, CA: Linguistics Research Center. [6] Abbott, Stan. (1985). A tentative multilevel multiunit phonological analysis of the Murik language. Papers in New Guinea Linguistics 22, 339-373. [7] Gordon, Matthew. (2006). Syllable Weight: phonetics, phonology, typology. New York, NY: Routledge Press. [8] Bender, M.L. (1996). Kunama. München: Lincom Europa. [9] Ashkaba, J., & Hayward, R. (1999). Kunama. Journal of the International Phonetic Association, 29(2), 179-185. [10] Weber, David. (1989). A grammar of Huallaga (Huananco) Quechua. Berkeley: Univeristy of California Press. [11] Gordon, Matthew. (2004a). A phonological and phonetic study of word-level stress in Chickasaw. International Journal of American Linguistics 70, 1-32. [12] Ryan, Kevin. (2019). [13] Bach, Emmon. (1975). Long vowels and stress in Kwakiutl. Texas Linguistic Forum 2, 9-19. [14] Walker, Rachel. (1996). Prominence-driven stress. ms. University of California, Santa Cruz. Rutgers Optimality Archive, ROA-172. [15] Paramore, Jonathan Charles. (2021). Mankiyali Phonology: description and analysis. Computational Resource for South Asian Languages (CoRSAL), University of North Texas master's thesis: Denton, Texas. [16] Hyde, Brett. (2007). Non-finality and weight-sensitivity. Phonology 24, 287-334.